240 research outputs found

    A flexible framework for defeasible logics

    Get PDF
    Logics for knowledge representation suffer from over-specialization: while each logic may provide an ideal representation formalism for some problems, it is less than optimal for others. A solution to this problem is to choose from several logics and, when necessary, combine the representations. In general, such an approach results in a very difficult problem of combination. However, if we can choose the logics from a uniform framework then the problem of combining them is greatly simplified. In this paper, we develop such a framework for defeasible logics. It supports all defeasible logics that satisfy a strong negation principle. We use logic meta-programs as the basis for the framework.Comment: Proceedings of 8th International Workshop on Non-Monotonic Reasoning, April 9-11, 2000, Breckenridge, Colorad

    Embedding Defeasible Logic into Logic Programming

    Full text link
    Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.Comment: To appear in Theory and Practice of Logic Programmin

    Large-scale Parallel Stratified Defeasible Reasoning

    Get PDF
    We are recently experiencing an unprecedented explosion of available data from the Web, sensors readings, scientific databases, government authorities and more. Such datasets could benefit from the introduction of rule sets encoding commonly accepted rules or facts, application- or domain-specific rules, commonsense knowledge etc. This raises the question of whether, how, and to what extent knowledge representation methods are capable of handling huge amounts of data for these applications. In this paper, we consider inconsistency-tolerant reasoning in the form of defeasible logic, and analyze how parallelization, using the MapReduce framework, can be used to reason with defeasible rules over huge datasets. We extend previous work by dealing with predicates of arbitrary arity, under the assumption of stratification. Moving from unary to multi-arity predicates is a decisive step towards practical applications, e.g. reasoning with linked open (RDF) data. Our experimental results demonstrate that defeasible reasoning with millions of data is performant, and has the potential to scale to billions of facts

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    A System for Modal and Deontic Defeasible Reasoning

    Get PDF
    Defeasible reasoning is a well-established nonmonotonic reasoning approach that has recently been combined with semantic web technologies. This paper describes modal and deontic extensions of defeasible logic, motivated by potential applications for modelling multi-agent systems and policies. It describes a logic metaprogram that captures the underlying intuitions, and outlines an implemented system

    Rule-Based Composite Event Queries

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Representing time and space for the semantic web

    Get PDF
    Representation of temporal and spatial information for the Semantic Web often involves qualitative defined information (i.e., information described using natural language terms such as "before" or "overlaps") since precise dates or coordinates are not always available. This work proposes several temporal representations for time points and intervals and spatial topological representations in ontologies by means of OWL properties and reasoning rules in SWRL. All representations are fully compliant with existing Semantic Web standards and W3C recommendations. Although qualitative representations for temporal interval and point relations and spatial topological relations exist, this is the first work proposing representations combining qualitative and quantitative information for the Semantic Web. In addition to this, several existing and proposed approaches are compared using different reasoners and experimental results are presented in detail. The proposed approach is applied to topological relations (RCC5 and RCC8) supporting both qualitative and quantitative (i.e., using coordinates) spatial relations. Experimental results illustrate that reasoning performance differs greatly between different representations and reasoners. To the best of our knowledge, this is the first such experimental evaluation of both qualitative and quantitative Semantic Web temporal and spatial representations. In addition to the above, querying performance using SPARQL is evaluated. Evaluation results demonstrate that extracting qualitative relations from quantitative representations using reasoning rules and querying qualitative relations instead of directly querying quantitative representations increases performance at query time
    • …
    corecore